

Application of Mixed Method Approach to Impact Assessment in Evaluating Agricultural Technology Adoption in the Visayas Region

Moises Neil V. Seriño, PhD Visayas State University Region 8

INTRODUCTION

- Impact assessment provides tangible evidences of changes in outcomes and facilitates evidence-based policy planning.
- Impact assessments guide decision-making about the allocation of scarce resources toward activities that enhance desired outcomes for the target beneficiaries
- There is no all-encompassing evaluation methodology that can completely capture the complexity of outcomes of development projects

INTRODUCTION

 Recognizing that development projects are becoming more complex and that outcomes occur in dynamic settings, there is a need for a more comprehensive approach in assessing impacts.

 Using a mixed method approach in impact assessment becomes necessary to effectively capture the effects of different kinds of interventions

Review, identify, adapt/ develop, and mix appropriate methods for mixed method approach in impact assessment of agricultural research and development projects

Development of the mixed method framework

Integrated approach of the framework

Application of the Mixed Method Framework to Selected Research Projects in Visayas Area

- Sustaining and Growing Landcare Systems (Landcare Project) in Bohol
- Sustainable Upland Farming Through the Establishment of Conservation Farming Villages in Negros Oriental

Application of the Mixed Method Framework to Technology Adoption

in Bohol

"Sustaining and Growing Landcare Systems (Landcare) Project in Bohol"

Research Sites

Sustaining and Growing Landcare Systems (Landcare) Project in Bohol

- The project aimed to sustain adoption of conservation farming systems using natural vegetative strips, promote diverse and productive cropping systems, Improved capacity of farmers to make better business decisions
- Established theory of change (TOC) and impact pathway

THEORY OF CHANGE: Landcare Program is a farmercentered and farmer-led, group-based approach to agricultural extension, aimed at improving upland livelihoods through sustainable soil conservation farming.

Application of the MMAIA Framework to Selected Research Projects in Central Philippines

Activities Conducted

Sustaining and Growing Landcare Systems (Landcare) Project in Bohol

Sustaining and Growing Landcare Systems (Landcare) Project in Bohol

Designing the methodological approach: Exploratory sequential mixedmethod approach

- Qualitative data gathering through KIIs and FGDs and analysis of information
- Creating shared understanding on the context of impact assessment and further development of the impact pathway

Development of survey questionnaire (mainly for quantitative analysis)

Impact Pathway

Socio-demographic Characteristics

Variable	Adopter	Non-adopter	All Farmers
Main occupation (%)			
Farming	91.5	83.1	87.0
Barangay official/ worker	1.5	1.9	1.8
Others	6.9	14.9	11.3
Estimated annual household income (pesos)	137,190	90,971	112,128
Estimated annual household expenditure (pesos)	87,718	71,811	79,092

Farm Characteristics

Variable	Adopter	Non-adopter	All Farmers
Farming experience (years)	37.8	36.5	37.2
Farm area (mean ha)	1.61	1.27	1.45
Upland area (mean ha)	1.43	1.08	1.26
% Upland area	87.2	85.0	86.9
Tenure status (%)			
Owner	55.4	53.2	54.2
Share tenant	25.4	31.8	28.9
Others	19.2	14.3	16.5

Factors Affecting Adoption

Variable	Marginal Effects	S.E	
Annual income	3.24e-07*	1.83e-07	
Attendance to training	0.083*	0.050	
Farming experience	0.002	0.001	
Tenure status	-0.023	0.046	
Credit	-0.004	0.056	
Education	0.001	0.008	
Membership in organizations	0.436***	0.032	
Observations	284		

Changes that occurred in the farms of adopters

Variable (%)	Increase	Decrease	No Change
Yield	87.2	0.8	12.0
Soil loss	2.4	96.0	1.6
Soil fertility	87.2	3.2	9.6
Soil moisture	68.8	1.6	29.6
Labor use	25.6	16.8	57.6
Fertilizer use	20.8	46.4	32.8
Weed growth	40.8	18.4	40.8
Food for the household	77.6	22.4	-
Farm cash income	68.0	-	32.0
Number of timber trees	96.4	3.6	-
Frequency of availing credit	15.5	22.4	62.1
Amount of credit	19.0	22.4	58.6
Ability to pay loans	41.4	5.2	53.4

SIRO

Propensity Score Matching in Estimating Impacts

Handling bias

□ A crucial point in any impact assessment is coping with selection bias. This happens when there are systematic differences between households in the treated group and households in the control group.

- □ For this study, the treated group are composed of households who are beneficiary of the Landcare program in Bohol and the control group are the randomly selected non-beneficiary households.
- However, comparing the adopter and the non-adopter group without regard to its inherent differences might lead to bias.

Methodological approach

Descriptive Statistics

Variables	Adopter (n = 130)	Non-adopter (n = 154)	t-value	p>t
Age household head	59.84	60.88	-0.93	0.356
Male household head	0.97	0.95	0.85	0.397
Education household head	6.06	6.41	-0.96	0.336
Education spouse	5.10	5.58	-1.22	0.222
Household size	4.94	4.21	2.92***	0.004
House ownership	0.79	0.95	-4.53***	0.000
Access to electricity	0.83	0.97	-4.21***	0.000
Farm area	1.61	1.27	1.91*	0.057
Rolling topography	0.53	0.44	1.59	0.112
Land ownership	0.47	0.51	-0.68	0.497
Years in farming	37.82	36.54	0.71	0.479
Membership in organization	0.64	0.47	3.00***	0.003
Farm market distance	2058.20	2644.10	-1.01	0.314
Asset index	2.83	2.77	0.41	0.679
*** p<0.01, ** p<0.05, * p<0.1				

Estimating propensity score

To reduce the differences on observable characteristics observed, propensity score matching technique will be use to compare the beneficiary group to the nonbeneficiary group by matching households with similar characteristics.

For estimating propensity score, logit model of the following form was used:

 $P_{i} = E(Y_{i} = 1 | X) = 1 / (1 + e^{-z}) = \beta_{0} + \beta_{1}age + \beta_{2}gender$ $+\beta_{3}educhh + \beta_{4}educsp + \beta_{5}hhsize \dots + \beta_{14}asset + u_{i}$

Balancing of covariates

Variables	Adopter (n = 97)	Non-adopter (n = 89)	t-value	p>t
Age household head	60.34	58.81	1.18	0.240
Male household head	0.98	0.98	-0.17	0.861
Education household head	5.96	5.87	0.23	0.818
Education spouse	5.45	5.67	-0.49	0.628
Household size	4.87	4.79	0.27	0.786
House ownership	0.90	0.94	-1.24	0.216
Access to electricity	0.94	0.94	-0.10	0.920
Farm area	1.55	1.48	0.36	0.720
Rolling topography	0.61	0.53	1.06	0.290
Land ownership	0.58	0.57	0.10	0.923
Years in farming	38.94	37.86	0.60	0.552
Membership in organization	0.76	0.75	0.22	0.825
Farm market distance	1907.30	1354.3	1.29	0.197
Asset index	3.12	3.12	0.00	0.999

Balancing of covariates

Impact estimates (ATT)

Impact = Outcomes (adopters) – Outcomes (non-adopters)

$$\partial_{ATT} = E [\{E[Y_1 | P(X_i), T_i = 1] - E[Y_0 | P(X_i), T_i = 0]\} | T_i = 1]$$

where:

 $P(X_i) = Pr(T = 1 | X_i) = E[T_i | X_i] = conditional probability or propensity score$

T = binary variable 1 for beneficiary group and 0 for non-beneficiary

Y₁ = outcome variable (farm income) for the treated group

 Y_0 = outcome variable (farm income) for the comparison group

Contour farming adoption

Impact estimates (ATT) – all farms

	Nearest	Radius	Kernel
Farm income	neighbour	matching	marching
ATT (Farm income)	38,752.88*	38,913.0*	40,195.39**
Bootstrap SE§	20,553.70	20,402.34	20568.11
Z	1.89	1.91	1.95
P> z	0.059	0.056	0.05

Contour farming adoption

Impact estimates (ATT) – small farms

Farm income	Nearest neighbour	Radius matching	Kernel marching
	licigiibuu	matching	marching
ATT (Farm income)	10,050.17	14,385.57*	7,270.08
Bootstrap SE§	8970.87	8,417.59	8,009.96
Z	1.12	1.71	0.91
P> z	0.263	0.087	0.36
Adopters (n)	25	25	28
Non-adopters (n)	29	29	25

Note: § Standard error was bootstrapped and replicated 100 times

*** p<0.01, ** p<0.05, * p<0.1

Contour farming adoption

Impact estimates (ATT) – big farms

	Nearest	Radius	Kernel
Farm income	neighbour	matching	marching
ATT (Farm income)	3,760.32	2,108.38	6,583.80
Bootstrap SE§	15,316.29	13,939.18	20,012.07
Z	0.25	0.15	0.33
P> z	0.806	0.88	0.74
Adopters (n)	25	25	25
Non-adopters (n)	19	19	19

Impact estimates (ATT) – below poverty line

Farm income	Nearest neighbor	Radius matching	Kernel matching	
	neighbol	matering	matching	
ATT (Farm income)	9,675.25**	10,022.01***	9,049.61**	
Bootstrap SE§	4,013.04	3,135.96	4,156.74	
Z	2.41	3.20	2.18	
P> z	0.016	0.001	0.029	
Adopters (n)	61	61	64	
Non-adopters (n)	64	64	60	

Impact estimates (ATT) – above poverty line

	Nearest	Radius	Kernel
Farm income	neighbour	matching	matching
ATT (Farm income)	28,091.74	6,432.00	32,213.28
Bootstrap SE§	82,519.99	84,343.56	107,700.80
Z	0.34	0.08	0.30
P> z	0.734	0.939	0.765
Adopters (n)	19	19	19
Non-adopters (n)	24	24	24

Environmental Impacts

- ✓ Improved landscape
- ✓ Increased biodiversity
- ✓ Reduced soil erosion

Most Significant Change Stories

An example of a story shared by a adopter from Cantagdaan, Pilar, Bohol

"When I contoured my farm, I was able to plant more crops. My choices on crops to plant increased. I also observed that the soil in my farm remained fertile because the soil is not anymore eroded and washed downward when there is rain.... For me, the change is good because I now have better harvest from my farm and it has helped in the schooling of my child."

Most Significant Change Stories

Farmer from San Isidro, Bohol also shared:

"The seminar was also able to help me because in the past, I was a shy person but after the seminar, we always met and I noticed that I was able to slowly overcome my shyness and I learned how to interact with other people"

Most Significant Change Stories

Distribution of significant change stories about impacts of the Landcare Project per municipality and domain of change

	Μ	unicipa			
Domain of Change	Alicia	Pilar	San Isidro	Total	%
1. Change in knowledge	0	1	1	2	4
2. Change in practices	0	0	1	1	2
3. Environmental changes	14	9	6	29	63
4. Economic changes	1	2	6	9	20
5. Social changes	0	1	1	2	4
6. Other changes	2	0	1	3	7
Total	17	13	16	46	100

Conclusion and Recommendation

Conclusions

- Results of the assessment where the framework was applied, provided significant impact on income of beneficiaries in the area
- The impact is more pronounced among farmers below poverty line and with smaller farms
- In addition, project beneficiaries identified significant impacts in their capacity and social capital

Recommendations

- Capacity building is one of the effective approaches in increasing productivity in the Philippines however a new design is needed to target increasing productivity of those who have relatively larger farms.
- Results have implications in designing capacity building programs aiming to upgrade farmers knowledge and skills and influencing productivity targeting specific groups
 - Policy makers can leverage peer effects through building networks and social initiatives to boost participation in government programs

Recommendations

- For future projects to be evaluated, it is important to have a clear theory of change that can guide the evaluation of project impacts.
- An iterative approach was useful in guiding the assessment of complex projects and documenting diversified benefit streams
- The mixed method approach will require more time, resources, and expertise

Book Publication

An integrated approach to ex-post impact assessment

Liana Williams, Larelle McMillan, Monica van Wensveen and James Butler CSIRO

Jose DV Camacho Jr, Aileen Lapitan, Rodmyr Datoon, Jeanarah Gapas and Emmanuel Pinca University of the Philippines, Los Baños

Fe M. Gabunada, Moises Neil V Seriño, Lilian B. Nuñez, Ana Liza Recto, Jessica H. Ruales, Wendy C. Enerlan and Editha G. Cagasan Visayas State University

Princess Alma B Ani and Mia Barbara Aranas

Philippine Council for Agriculture, Aquatic and Natural Resources Research and Development

ACIAR Impact Assessment Series Report No. 102

<u>https://www.aciar.gov.au/publication/technical-</u> publications/integrated-approach-ex-post-impact-assessment

Application of Mixed Method Approach to Impact Assessment in Evaluating Agricultural Technology Adoption in the Visayas Region

Adoption of Soil Conservation Practices

variable	
ype of contour farming adopted (%)	
Natural vegetative strip (NVS)	30.9
Enriched NVS	66.7
Rock wall	3.0
Crops used as hedgerow for enriched NVS* (%)	
Coconut	54.8
Banana	51.9
Fruit trees	23.1
Timber trees	18.3
Napier grass	17.3

